figure-2-tr-osc-and-signals

A Market Valuation Gauge That Works

Originally Published March 15, 2016 in Advisor Perspectives

In my previous article, I examined many popular metrics that all show that U.S. equities have been overvalued for over 20 years. The conventional explanation is that the overvaluation and its unusually long duration is a statistical outlier. But those aberrations were observed in only 15% of the data population (20 out of 134 years) and are unlikely to be statistical outliers. The root cause is not yet known. Until the anomaly is better understood, naively equating the lack of mean reversion with overvaluations will lead to misguided valuations and ill-advised investment strategies.

A decade ago, I began searching for a valuation indicator that is immune to possible mean-reversion malfunction. The challenge proved to be much more difficult than anticipated. I ultimately had to abandon my search and developed my own valuations gauge, the total return oscillator (TR-Osc) and present it here.

Oscillatory gauge

Mean reversion is the underpinning of all valuations metrics. The basic concept of valuations relies on the notion that value oscillates between an upper bound (overvalued) and an lower bound (undervalued) around a median (fair-valued). How do you calibrate a gauge that has an unbounded output or with a drifing median that confuses mean reversion? A functioning valuations gauge should resemble a pseudo sine-wave oscillator with quasi-periodicity.

Although the cyclically adjusted price-to-earnings ratio (CAPE) oscillated around a stable geometric mean of 14 from 1880 to 1994, its mean has risen to 26.2 since 1995 (Figure 1A) – a telltale sign of mean reversion malfunction. By contrast, my TR-Osc has been bounded by well-defined upper and lower demarcations for over a century. The mean of TR-Osc measured from 1875 to 1994 is almost identical to the value computed over the last 20 years (Figure 1B). After reaching either extreme, TR-Osc always reverts toward its long-term historical mean.

From 1880 to 1950, TR-Osc and CAPE were almost in sync. After 1955, the two indicators began to diverge. Although both the CAPE and TR-Osc detected the dot-com bubble in 2000 (red squares), only the TR-Osc warned us about the 1987 Black Monday crash (red circle). After the 2000 peak, CAPE stayed elevated and came down only once in mid-2009 to touch its historical mean at 14. The TR-Osc, however, dropped to its lower bound in January 2003 (green arrow) getting ready for the six-year bull market from 2003 to 2008. The TR-Osc did it again after the housing bubble when it dipped below the lower bound of 0% in February 2009, just in time to reenter the market at the start of a seven-year bull market from 2009 to present.

In 2008, the TR-Osc reached a minor summit (red triangle) while CAPE exhibited no peak at all. Both TR-Osc and CAPE indicate that the meltdown in global financial markets did not stem from an overvalued equity market. I will expand on this later when I discuss the real estate sector.

figure-1a-cape

Common deficiencies in all contrarian indicators

There are two common deficiencies shared by all contrarian indicators including all traditional valuations models. First, their signals are often premature because the market can stay overvalued or undervalued for years. Greenspan's 1996 irrational exuberance speech alluded to an overvalued market but it was four years too early. From 1996 to the dot-com peak in 2000, the S&P500 surged 87% and the NASDAQ 288%.

The second deficiency of all contrarian indicators is that the market can reverse direction without hitting either extreme at all. The CAPE, for example, was not undervalued in 2002 or 2009. Value investors would have missed out on huge gains of 90% and 180% from the two spectacular bull markets in the 2000s.

The dual gauges of the TR-Osc: scalar and vector

Before I explain how the TR-Osc overcomes these two deficiencies, let me first describe the TR-Osc. The TR-Osc captures what investors in the aggregate earn by investing in the S&P 500. That is the sum of two components – the first from price changes and the second from dividend yields. Price return is the trailing five-year compound annual growth rate (CAGR). Dividend yield is the annual return from the dividends investors received. The look-back period doesn't necessarily have to be five years. All rolling periods from 2 to 20 years can do the job. In addition, both real (inflation-adjusted) and nominal TR-Osc's work equally well because inflation usually does not change much over a five-year period.

The TR-Osc overcomes the two deficiencies by having two orthogonal triggers, a scalar marker and a vector sensor. The oscillatory and mean-reverting attributes of the TR-Osc allow overvaluation and undervaluation markers to be clearly defined (Figure 2). When the TR-Osc was near the upper bound (the 20% overvalued marker), the S&P 500 often peaked. When the TR-Osc was near the lower bound (the 0% undervalued marker), the market soon bottomed. But in 2008, the TR-Osc only reached 12% and the market was not overvalued. Investors had no warning from the valuation marker to avert the impending subprime meltdown. Valuation markers (scalar) alone are not enough. The TR-Osc needs a second trigger, a motion sensor (vector) that tracks the up or down direction of valuations.

figure-2-tr-osc-and-signals

Let me illustrate how the scalar and vector triggers work in concert and how buy/sell signals are executed. When the TR-Osc is rising (an up-vector) or drops below the lower bound at 0% (an undervalued marker), a bullish market stance is issued. When the TR-Osc is falling (a down vector) but stays above 0% (not undervalued), or when it exceeds the upper bound at 20% (an overvalued marker), a bearish alarm is sounded. The asymmetry in the buy/sell rules stems from prospect theory, which contends that losses have more emotional impact to people than an equivalent amount of gains.

When a bullish signal is issued, buy the S&P 500 (e.g. SPY). When a bearish alarm is sounded, sell the S&P 500. After exiting the stock market, park the proceeds in 10-year Treasury bonds. The return while holding the S&P 500 is the total return with dividends reinvested. The return while holding U.S. Treasury bonds is the geometric sum of both bond yields and bond price percentage changes caused by interest rate changes.

The performance data presented in this article assume that all buy and sell signals issued at the end of the month were executed at the close in the following month. When the TR-Osc signals were executed closer to the issuance dates, both return and risk performances were slightly better.

TR-Osc performance stats

Figure 3 shows two hypothetical cumulative returns from 1880 to 2015 – the TR-Osc with the buy/sell rules stated above and the S&P 500 total return. Over 135 years, the TR-Osc has a 190 basis point CAGR edge over the buy-and-hold benchmark with less than half of the drawdown risk.

The TR-Osc traded infrequently – less than one round trip a year on average. The TR-Osc is an insurance policy that protects investors against catastrophic market losses while preserving their long-term capital gain tax benefits.

figure-3-tr-osc-1880-to-2015

Let's take a closer look at the TR-Osc signals in two more recent time windows. Since 1950, there have been 10 recessions. Figure 4A shows that the TR-Osc kept investors out of the market in all 10 of them. Figure 4B shows that the latest TR-Osc bearish call was issued in September 2015. The TR-Osc sidestepped the recent stock market turmoil and has kept investors' money safe in Treasury bonds.

figure-4a-tr-osc-1950-to-2015

Table 1 shows performance stats for various sets of bull and bear market cycles. TR-Osc beats the S&P500 total return in CAGR, maximum drawdown, and volatility. The consistency in outperforming the S&P500 in returns and in risk over different sets of full bull/bear cycles demonstrates the robustness of TR-Osc.

table-1-tr-osc-vs-the-sp500

TR-Osc has universal applicability

Like the CAPE, the TR-Osc’s efficacy is not limited to the S&P 500. It can also measure valuations in overseas markets (developed and emerging), hard assets and currencies. For example, Figure 5 shows three alternative spaces – raw materials (Figure 5A), oil and gas (Figure 5B) and real estate (Figure 5C) (data source: Professor Kenneth French). This universal applicability of the TR-Osc also enables intermarket synergies. Recall in Figure 2 that the stock market was not overvalued in 2008 according to both the CAPE and the S&P 500 TR-Osc. Note that the real estate TR-Osc correctly detected the housing bubble (red square in Figure 5C). When the systemic risk spread to the stock market, the S&P 500 TR-Osc vector sensed the danger and turned bearish.

figure-5

Figures 6A to 6C shows that the TR-Osc improves both the return and drawdown in two distinctively different spaces – precious metals (data source: Professor Kenneth French), the Canadian dollar and the Australian dollar (data source: FRED). Prices in precious metals fluctuate widely at rapid speeds while foreign currencies crawl in narrow ranges at a snaillike pace. It's remarkable that the TR-Osc works equally well across drastically different investment classes. How does the TR-Osc help a diverse group of characters with different personalities perform better?

figure-6

The analytics of TR-Osc

You may say that TR-Osc is just a five-year rolling total return. But what breathes new life into an otherwise ordinary formula is the analytics behind the TR-Osc. The adaptability of buy and sell rules is the reason behind the TR-Osc's universal applicability. As indicated previously, the TR-Osc has two triggers: valuation markers (scalar) and valuation directional sensor (vector). How did I pick the values for these triggers? The vector is obvious – up is bullish and down is bearish – but how do I select the valuation markers?

In Figures 2, 5 and 6, the middle blue line is the mean. The upper blue lines are the overvaluation markers and the lower blue lines, undervaluation markers. The upper blue lines are M standard deviations above the mean and the lower blue lines, N standard deviations below the mean. Each time series has a unique personality. For example, the means of most currencies are near 0% while the mean of the S&P 500 is near 9%. More volatile investments like precious metals, oil and gas would have larger standard deviations than the serene currency space. The values of M and N are selected to match the personality of each underlying investment. The general range for both M and N is between 1 and 2.

A common flaw in the design of engineering or investments systems is over-fitting. I have developedfive criteria to minimize this bad practice. The five criteria are simplicity, sound rationale, rule-based clarity, sufficient sample size, and economic cycle stability. The TR-Osc not only meets all of these criteria but offers one additional merit – universal applicability. It works not only on the S&P 500, but on overseas markets and across a diverse set of alternative investments.

Theoretical support for TR-Osc

Traditional valuation metrics rely on fundamentals, which often experience paradigm shifts across secular cycles. Fundamental factors can be influenced by generational changes – technological advances, demographic waves, socioeconomic evolutions, structural shifts, political reforms or wars. Therefore the means in many of the traditional valuation metrics can drift when the prevailing fundamentals change.

The TR-Osc downplays the importance of the external fundamental factors and focuses primarily on the internal instinct of the investors. Investors' value perception has two behavioral anchors. The first anchor drives investors toward the greed/fear emotional extremes. For example, when the S&P 500 delivers a five-year compound annual return in excess of the 20%, euphoria tends to reach a steady state and investors become increasingly risk adverse. When their returns get stuck at 0% five years in a row, investors are in total despair and the market soon capitulates. Both greed and fear extremes can be quantified by the TR-Osc's over- and undervaluation markers.

The second behavioral anchor is the tendency of herding with the crowd. When neither greed nor fear is at extreme levels, investors have a behavioral bias toward crowd-herding. Once a trend is established in either up or down direction, more investors will jump onboard the momentum train and price momentum will solidify into sustainable trends. The collective movement of the masses is tracked by the TR-Osc's vector sensor.

Concluding remarks

Unlike fundamental factors which can be altered by paradigm shifts over long arcs of time, human behaviors which are hardwired into our brains have not changed for thousands of years. The efficient market hypothesis assumes that markets are made up of a large number of rational investors efficiently digesting all relevant information to maximize their wealth. Behavioral finance theory suggests that investors are often driven by the inherent cognitive psychology of people whose decisions are often irrational and their actions exhibit behavioral biases. Perhaps the aberration (the malfunctioned mean reversion) observed in many of the traditional valuations ratios suggests that investors are not 100% homo economicus beings after all. More often than not, investors behave irrationally when they are besieged by emotions.

The TR-Osc captures the essence of both traditional finance and behavioral economics by reading investors' value perception from both the rational and the emotional wirings of their brains. It elucidates many valuable but abstract concepts from both schools into quantitative, objective and actionable investment strategies. As long as humans continue to use their dual-process brains (see also Dr. Daniel Kahneman) in decision making, TR-Osc will likely endure as a calibrated valuation gauge until humans evolve into the next stage.

The TR-Osc asserts that the current stock market is not overvalued. Instead, since mid-2015, its vector has been reverting towards its stable historical mean.

Theodore Wong graduated from MIT with a BSEE and MSEE degree. He served as general manager in several Fortune-500 companies that produced infrared sensors for satellite and military applications. After selling the hi-tech company that he started with a private equity firm, he launched TTSW Advisory, a consulting firm offering clients investment research services. For over three decades, Ted has developed a true passion in the financial markets. He applies engineering statistical tools to achieve absolute investment returns by actively managing risk in both up and down markets. He can be reached at ted@ttswadvisory.com.

figure-3-super-macro-holy-grail-and-the-sp500-total-return

Super Macro – A Fundamental Timing Model

Originally Published April 10, 2012 in Advisor Perspectives

Buy-and-hold advocates cite two reasons why tactical investing should fail. It violates the efficient market hypothesis (EMH), they say, and it is nothing more than market-timing in disguise.

But they are wrong. Rather than endure losses in bear markets – as passive investors must – I have shown that a simple trend-following model dramatically improves results, most recently in an Advisor Perspectives article last month.  Now it’s time to extend my approach by showing how this methodology can be applied to fundamental indicators to further improve performance.

The EMH does not automatically endorse buy-and-hold, nor does it compel investors to endure losses in bear markets. Financial analysts forecast earnings and economists make recession calls routinely, yet academics ridicule market timers as fortunetellers, and market timers resort to labeling themselves as tactical investors to avoid the stigma. Why?

Perhaps what sparks resentment toward market timers is not their predictions, but how they make their predictions. Reading tea leaves is acceptable as long as the tea has a "fundamental analysis" label, but market timing is treated as voodoo because it offends the academic elite, whose devotion to the notion of random walk is almost religious.

I am not a market timer, because I can't foretell the future. But neither do I buy the random-walk theory, because my Holy Grail verifies the existence of trends. Timing is everything. When your religion commands you to hold stocks even when the market is behaving self-destructively, it's time to find a new faith.

Timing models that follow price trends are technical timing models. "The Holy Grail" is an example of a technical timing model. Timing models that monitor the investment climate are fundamental timing models. My Super Macro model is a prime example of a fundamental timing model that works.  Before presenting my Super Macro, I will first disclose the details of my earning-growth (EG) model. As one of the 18 components of Super Macro, the EG model illustrates my methodology in model design.

But first let’s look at the engineering science that makes these models possible.

Macroeconomics, an engineering perspective

table-1-super-macro-model

Engineers assess all systems by their input, output, feedbacks, and controls. From an engineering perspective, the economy is like an engine. It has input (the labor market andhousing) and output (earnings andproduction). The engine analogy and the economic terms in the parenthetical are presented in Table 1. At equilibrium, the engine runs at a steady state, with balanced input and output. When aggregate demand exceeds aggregate supply, the engine speeds up to rebalance. This leads to economic expansions that drive cyclical bull markets. When output outpaces input, the engine slows down. This causes the economy to contract, leading to cyclical bear markets.

The economic engine has multiple feedback loops linking its output to input. Feedback loops can amplify small input changes to produce massive output differentials. Financial leverage is a positive feedback to the economy like a turbocharger is to a car engine. Strong economic growth entices leverage expansions (credit demands), which in turn accelerates economic growth. This self-feeding frenzy can shift the engine into overdrive.

Deleveraging, on the other hand is a negative feedback loop. It creates fear and panic that are manifest in a huge surge in risk premium (credit spreads). The lack of confidence among investors, consumers and businesses could choke an already sluggish economy into a complete stall.

In a free-market system, price is a natural negative feedback mechanism that brings input and output into equilibrium. When demand outpaces supply, price will rise (inflation) to curtail demand. When supply exceeds demand, price will fall (deflation).

The speed of an engine is controlled by the accelerator and the brakes. The central bank, attempting to fight inflation while maximizing employment, uses its monetary levers (interest rates) to control the supply of money and credit. Because of the complex feedback loops within the economic engine, the Fed often overshoots its targets. The unavoidable outcome has been business cycles, which are in turn the root causes of cyclical bull and bear markets.

A fundamental timing model

Models that monitor the economic engine are called fundamental timing models. One example is the EG model, which uses a four-year growth rate of S&P 500 earnings to generate buy and sell signals. (Four years was the average business cycle length in the last century.) The EG model meets my five criteria for a good working model.

  1. Simplicity: The EG model has only one input: the S&P500 earnings.
  2. Commonsense rationale: The EG model is based on a sound fundamental principle that earnings and earnings growth drive stock prices.
  3. Rule-based clarity: Its rules boil down to following trends when they are strong but being contrarian when growth rates are extremely negative.
  4. Sufficient sample size: There have been 29 business cycles since 1875.
  5. Relevant data: Earnings are relevant, as profits are the mother's milk of stocks.

figure-1-the-eg-model-1875-to-2012

The strategy is simple: buy the S&P 500 when the earnings growth index is below -48% or when it is rising. The first buy logic is a contrarian play and the second is a trend follower. Sell signals must meet two conditions: the earnings growth index must be falling, and it must be under 40%. The 40% threshold prevents one from selling the market prematurely when earnings growth remains strong.

Figure 1 shows the resulting bullish and bearish signals from 1875 to present.

Earnings growth is a key market driver, watched closely by both momentum players and value investors. The signals shown in Figure 1 demonstrate that the model avoided the majority of business-cycle-linked bear markets. The EG model, however, could not envision events that were not earnings-driven, such as the 1975 oil embargo and the 1987 program-trading crash.

Like the Holy Grail, my EG model outperforms buy-and-hold in both compound annual growth rate (CAGR) and risk (standard deviation and maximum drawdown). Since 1875, the CAGR of EG was 9.7% with an annualized standard deviation of 12.5% and a maximum drawdown of -42.6%. By comparison, the buy-and-hold strategy with dividend reinvestment delivered a CAGR of 9.0% with a standard deviation of 15.4% and a devastating maximum drawdown of -81.5%.

Since 2000, the EG model has issued only two sell signals. The first spanned January 30, 2001 to August 30, 2002 – during which time the dot-com crash obliterated one third of the S&P 500’s value. The second sell signal came on June 31, 2008, right before the subprime meltdown started, and it ended on March 31, 2009, three weeks after the market bottomed. Who says that market timing is futile? Both Holy Grail and EG worked not by predicting the future, but by steering investors away when the market trend and/or the fundamentals were hostile to investing.

Earnings growth is a yardstick to measure the health of 500 US corporations. Stock price, however, discounts information beyond such microeconomic data. In order to gauge the well-being of the economy more broadly, I need a macroeconomic climate monitor.

But the economy is extremely complex. Meteorologists monitor the weather by measuring the temperature, pressure, and humidity. How do we monitor the economy?

My Super Macro model

Before investing, we should first find out how the economic engine is running. If one wants to know the operating conditions of an engine, he reads gauges installed to track the engine's inputs, outputs, control valves, and feedback loops.

Table 1 lists the 18 gauges I watch to calibrate the economic engine, which I then integrate into a monitoring system I call "Super Macro." The EG model is one of the sub-components of Super Macro. In this paper, I have fully disclosed the design of the EG model. The details of the rest of remaining models are proprietary, but I can assure you that they satisfied the five design criteria for a robust model.

Super Macro performance: January 1920 to March 2012

Figure 2 shows all Super Macro signals since 1920. The blue line is the Super Macro Index (SMI), which is the sum of all signals from the 18 gauges listed in Table 1. There are two orange "Signal Lines." Super Macro turns bullish when the blue line crosses above either one of the two signal lines and remains bullish until the blue line crosses below that signal line. Super Macro turns bearish when the blue line crosses below either signal line and remains bearish until the blue line crosses above that signal line. The color-coded S&P 500 curve depicts the timing of the bullish and bearish signals.

figure-2-super-macro-signals

The Super Macro index has demonstrated its leading characteristics throughout history. While my EG model didn't detect the oil embargo recession from 1974 to 1975, the SMI began its decline in 1973 and crossed below the 50% signal line in November 1973, just before the market plunged by 40%. From 2005 to 2007, during a sustained market advance, the SMI was in a downward trend, warning against excessive credit and economic expansions. On September 30, 2008, at the abyss of the subprime meltdown, the SMI bottomed; it then surged above the -20% Signal Line on March 31 2009, three weeks after the current bull market began.

Like the Holy Grail and EG models, Super Macro outperformed buy-and-hold in both CAGR and risk. From 1920 to March 2012, the CAGR of Super Macro was 10.1%, with an annualized standard deviation of 14.1% and a maximum drawdown of -33.2%. By comparison, the buy-and-hold strategy with dividend reinvestment delivered a CAGR of 9.9% with a standard deviation of 17.2% and a maximum drawdown of -81.5%.

Super Macro, Holy Grail and the buy-and-hold strategy

Let's compare Super Macro and Holy Grail to the S&P 500 total return from 1966 to March 2012, the period that is the most relevant to the current generations of investors. It covers two secular bear markets (from 1966 to 1981 and from 2000 to present) and one secular bull cycle (from 1982 to 1999). Secular markets, like cyclical markets, can be objectively defined. They will be the topics of a future article.

Figure 3 shows cumulative values for a $1,000 initial investment made in January 1966 in each of the three strategies. The Holy Grail outperformed the S&P 500 in the two secular bear cycles, but it underperformed during the 18-year secular bull market. As noted before, the buy-and-hold approach did not make sense in bear markets, but it worked in bull cycles. The cumulative value of Super Macro depicted by the blue curve always beat the other two throughout the entire 46-year period.

figure-3-super-macro-holy-grail-and-the-sp500-total-return

The CAGR of the Super Macro model from 1966 to March 2012 was a spectacular 11.4%, with an annualized standard deviation of 12.5% and a maximum drawdown of -33.2%. The Holy Grail model in the same period had a CAGR of 9.5%, with a lower standard deviation of 11.2% and a smaller maximum drawdown of -23.2%. By comparison, the S&P 500 total-return index delivered a CAGR of 9.3% but with a higher standard deviation of 15.4% and a massive maximum drawdown of -50.9%.

The current secular bear market cycle, which began in 2000, highlights the key differences between Super Macro, the Holy Grail, and the buy-and-hold approach. The S&P 500 total return delivered a meager 1.5% compound rate, with a standard deviation of 16.3% and a maximum drawdown of -50.9%. The trend-following Holy Grail returned a compound rate of 6.2%, with a low standard deviation of 9.5% and a small maximum drawdown of only -12.6%. Super Macro timed market entries and exits by macroeconomic climate gauges. It incurred intermediate levels of risk (a standard deviation of 12.4% and a maximum drawdown of -33.2%), but it delivered a remarkable CAGR of 8.5% from January 2000 to March 2012.

The main difference between a macro model and a technical model is that the timing of fundamentals is often early, while a trend follower always lags. In the next article, I will present an original concept that turns the out-of-sync nature of these two types of timing models to our advantage in investing.

Rule-based models achieve the two most essential objectives in money management: capital preservation in bad times and capital appreciation in good times. If you are skeptical about technical timing models like the Holy Grail, I hope my fundamentals-based Super Macro model will persuade you to take a second look at market timing as an alternative to the buy-and-hold doctrine. Timing models, both technical and fundamental, when designed properly, can achieve both core objectives, while the buy-and-hold approach ignores the first one. Over the past decade, we saw how fatal not paying attention to capital preservation can be.

Theodore Wong graduated from MIT with a BSEE and MSEE degree. He served as general manager in several Fortune-500 companies that produced infrared sensors for satellite and military applications. After selling the hi-tech company that he started with a private equity firm, he launched TTSW Advisory, a consulting firm offering clients investment research services. For over three decades, Ted has developed a true passion in the financial markets. He applies engineering statistical tools to achieve absolute investment returns by actively managing risk in both up and down markets. He can be reached at ted@ttswadvisory.com.